Correlations of Glucose Levels in Interstitial Fluid Estimated by Continuous Glucose Monitoring Systems and Venous Plasma
نویسنده
چکیده
Corresponding author: Byung-Joon Kim Division of Endocrinology and Metabolism, Department of Internal Medicine, Konyang University School of Medicine, 685 Gasuwon-dong, Seo-gu, Daejeon 302-718, Korea E-mail: [email protected] Continuous glucose monitoring systems (CGMS) are relatively new technology that measures interstitial glucose every 5 minute over a period of 72 hours [1]. Continuous glucose monitoring by CGMS provides accurate data to patients and physicians about blood glucose variability during the measurement period. Two types of CGMS devices, intended for professional and personal use, are available. Professional devices allow physicians to download and analyze data and for use in clinical decision making. Personal devices allow patients to monitor real time glucose data and use such data for self-monitoring and medication adjustments. For this reason, the American Association of Clinical Endocrinologists has recommended the use of personal devices for glucose control and prevention of hypoglycemia in patients with type 1 diabetes [2,3] and pregnancy with diabetes [4,5]. The article, “The correlation and accuracy of glucose levels between interstitial fluid and venous plasma by continuous glucose monitoring system” [6] clearly showed a glucose time lag between blood levels and subcutaneous interstitial levels. Blood and interstitial fluid had different peak times and peak values after meal loading, but the trends of glucose excursion were very similar. In addition, CGMS data showed delayed peaks and lowered peak values compared to venous blood sugar levels after the ingestion of different kinds of food. These lags between the two compartments did not differ by food. The use of CGMS devices, which provide accurate control and monitoring of blood glucose levels, is suitable for use in uncontrolled diabetic patients and to help physicians make decisions regarding treatment modalities. In the treatment of diabetes, glucose variability, especially postprandial hyperglycemia, is a major risk factor for cardiovascular complications. By using CGMS devices, clinicians can easily access glucose variability in patients. Although patients more easily achieved target HbA1c levels when practicing self monitoring of glucose using the CGMS device than by other methods, systemic reviews comparing the results of CGMS use and intermittent fingertip glucose monitoring do not indicate significantly superior benefits of CGMS. However, they do support the improved detection of asymptomatic nocturnal hypoglycemia [7]. CGMS systems offer many advantages to patients and physicians. However, the sensitivity of glucose sensing decreases over time. After 3 to 5 days, the sensing amplitude of CGMS sensors becomes unreliable. The accuracy of sensors is affected by localized tissue reactions and fibrous encapsulation [8]. For these reasons, patients should calibrate sensing amplitudes through comparisons with fingertip glucose values regularly. Methods of blocking fibrous tissue aggregation and reducing Editorial
منابع مشابه
The Correlation and Accuracy of Glucose Levels between Interstitial Fluid and Venous Plasma by Continuous Glucose Monitoring System
BACKGROUND Clinical experience with the continuous glucose monitoring systems (CGMS) is limited in Korea. The objective of this study is to evaluate the accuracy of the CGMS and the correlation between interstitial fluid and venous plasma glucose level in Korean healthy male subjects. METHODS Thirty-two subjects were served with glucose solution contained same amount of test food's carbohydra...
متن کاملNon-Invasive Determination of Blood Glucose Levels by Optical Waveguide
Objective: Today, there are various non-invasive techniques available for the determination of blood glucose levels. In this study, the level of blood glucose was determined by developing a new device using near-infrared (NIR) wavelength, glass optical waveguide, and the phenomenon of evanescent waves. Materials and Methods: The body's interstitial fluid has made possible the development of ne...
متن کاملComparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients
BACKGROUND Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC meas...
متن کاملComparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels.
The relationship between glucose concentrations in interstitial fluid (ISF) and blood has generated great interest due to its importance in minimally invasive and noninvasive techniques for measuring blood glucose. The relationship between glucose levels in dermal ISF, and capillary and venous blood was studied with the dermal ISF samples obtained using the suction blister technique. The study ...
متن کاملDo sensor glucose levels accurately predict plasma glucose concentrations during hypoglycemia and hyperinsulinemia?
OBJECTIVE The MiniMed Continuous Glucose Monitoring System (CGMS) measures subcutaneous interstitial glucose levels that are calibrated against three or more fingerstick glucose levels daily. The objective of the present study was to examine whether the relationship between plasma and interstitial fluid glucose is altered by changes in plasma glucose and insulin levels and how such alterations ...
متن کامل